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Although researchers in undergraduate science, technology, engineering, and mathematics educa-
tion are currently using several methods to analyze learning gains from pre- and posttest data, the
most commonly used approaches have significant shortcomings. Chief among these is the inability to
distinguish whether differences in learning gains are due to the effect of an instructional intervention
or to differences in student characteristics when students cannot be assigned to control and treatment
groups at random. Using pre- and posttest scores from an introductory biology course, we illustrate
how the methods currently in wide use can lead to erroneous conclusions, and how multiple linear
regression offers an effective framework for distinguishing the impact of an instructional interven-
tion from the impact of student characteristics on test score gains. In general, we recommend that
researchers always use student-level regression models that control for possible differences in stu-
dent ability and preparation to estimate the effect of any nonrandomized instructional intervention

on student performance.

INTRODUCTION

For the past several decades, discipline-based education re-
searchers have focused on testing whether educational in-
terventions in college science classrooms lead to improved
student understanding and performance. Most interventions
are given at the classroom level, meaning that all students
in a given classroom receive the intervention. For example,
all students in a class may be exposed to a new multimedia
program (Aly et al., 2004), asked to participate in reciprocal
peer tutoring (Fantuzzo et al., 1989), or taught in a workshop
or studio format (Udovic et al., 2002).

To evaluate the impact of educational interventions like
these on student performance, researchers typically collect
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student test scores before and after the intervention—that is,
from a pretest and a posttest. Although some researchers are
interested in whether student scores improve after instruc-
tion (see Arwood, 2004; McConnell et al., 2006; Nam and Ito,
2011), most are interested in demonstrating that student test
scores improve more in treatment classrooms than in control
classrooms—that is, in sections that do receive the interven-
tion versus sections that do not.

What is the best way to analyze pre—post data in this set-
ting? Atleast four different methods for determining whether
learning gains differ in the treatment and control classrooms
are commonly used in the science, technology, engineering,
and mathematics (STEM) education literature: comparing 1)
raw change scores (e.g., Udovic et al., 2002); 2) normalized
gain scores (Hake, 1998); 3) normalized change scores (Marx
and Cummings, 2007); and 4) effect sizes (Andrews et al.,
2011). Unfortunately, none of these methods accounts for a
fundamental problem: controlling for student equivalence, or
lack thereof, in the classrooms being compared.

The problem of student nonequivalence is pervasive, be-
cause it is seldom possible to use randomization to con-
trol for differences in student ability or preparation (but see
Fantuzzo et al., 1989; Buzzell et al., 2002; Aly et al., 2004;
Bilgin et al., 2009). While nonrandomized designs are of-
ten unavoidable—it is very difficult to convince a registrar’s
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office to randomly assign students to courses—they raise
difficult questions about interpreting results. Namely, re-
searchers who use the methods listed above have no way
of knowing whether observed differences in learning gains
between the treatment and control classes are due to the
impact of the intervention itself or to differences between
treatment and control classes—including the instructor, the
instructional techniques used, and student characteristics—
that are completely independent of the intervention.

In this paper, we use test score data from two sections of
a college-level introductory biology course to illustrate how
each of the four commonly used methods can lead to mis-
leading conclusions. The two sections were taught by the
same instructor, in the same term, using identical instruc-
tional techniques. However, due to a scheduling conflict dur-
ing that term, the students enrolled in one of the sections had
substantially better academic qualifications, on average, than
students in the other section. We show that each of the four
methods commonly used to assess educational interventions
in college STEM classrooms would support the conclusion
that an “instructional intervention” in the higher-performing
section led to larger student learning gains, when in fact there
was no intervention at all.

We propose a solution to the problem by introducing an
approach that is ubiquitous in many other research areas
but currently underused in the STEM education literature:
multiple linear regression analysis. Specifically, we employ
a student-level regression model that controls for observable
differences between students in the treatment and control
classes and demonstrate that it leads to the correct conclu-
sion: differences in learning gains between the two sections
are driven by differences in the composition of the students
in the two sections, not by any intervention that was given
in one section or the other. We argue that to estimate an un-
biased intervention effect when analyzing data from non-
random experimental designs, researchers must account for
student background in a regression framework.

REVIEWING EXISTING METHODS FOR
ANALYZING PRE-POST DATA

Before introducing regression approaches for analyzing pre—
post data, we provide a brief review of the four approaches
commonly used in the undergraduate STEM literature to an-
alyze pre/posttest data and discuss some relative advan-
tages and disadvantages of each. However, we stress than
none of these four methods accounts for possible differences
in the student composition of the treatment and control
courses.

Raw Change Scores

Udovic et al. (2002) compare student learning gains in a
“workshop” introductory biology course, which included
numerous active-learning activities, with learning gains in
comparison courses taught primarily through lectures. Like
Dori et al. (2007), Fallahi (2008), and Linsey et al. (2007, 2009),
Udovic and colleagues use a t test to compare what we re-
fer to as “raw change scores” between treatment and control
classes. Raw change scores are simply the difference between
the postscore and the prescore. Udovic and coworkers con-
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tend that if student scores in the treatment course improve
more, on average, from the pretest to the posttest than do stu-
dent scores in the control course, then the gains must be due
to the intervention in the treatment courses. This procedure is
identical—meaning that it will result in the same p value and
conclusions regarding the effect of the intervention—to the
two-way repeated-measures analysis of variance (ANOVA)
used by Martin et al. (2007).

In both the treatment and control classes, the authors com-
pute the average raw change for each of the 11 questions
on their pre- and posttest. The mean raw change was higher
in the treatment classes than in the control classes for all 11
questions, and the t test rejected the null hypothesis that the
mean raw change scores were equal for seven of the 11 ques-
tions. The authors conclude that the active-learning strategies
in the treatment courses had a significant impact on student
learning gains.

Analyzing raw change is attractive in terms of simplic-
ity but does not account for the observation that students
with low scores on a pretest have more to gain than students
who score higher. The problem arises because test scores are
bounded—meaning that they have an upper limit. To ac-
count for differences in “ease of improving” from pre to post,
researchers have used two methods for standardizing or nor-
malizing gain scores, one at the classroom level and one at
the student level.

Normalized Gain Scores

Hake (1998) compares student learning gains on the Force
Concept Inventory across 62 different introductory physics
courses. In 48 of these courses, instructors had made substan-
tial use of interactive-engagement methods. Hake considers
these the treatment classes, while the 14 courses that were
based on traditional lecturing are the control classes. For each
class, Hake calculates the “average normalized gain,” sym-
bolized <g>, as the ratio of the average gain from pretest
to posttest to the maximum possible gain (g) = '_’1‘3?:5:: ,
where pre- and postscores are expressed as the average per-
cent correct in each class in the study. He reports that the
average normalized gain in the treatment courses was 0.48
+ 0.14 SD, while the average normalized gain in the con-
trol courses was 0.23 £ 0.04 SD. Although he did not per-
form a formal statistical hypothesis test, he concludes that
interactive-engagement methods have a significant positive
impact on student learning gains. Had he performed a ¢ test
of the average normalized gains, the p value would have
been <0.001—more than enough evidence to make the same
conclusion.

Reporting <¢>, the normalized learning gain, became pop-
ular in the undergraduate STEM education literature for sev-
eral reasons. First, by normalizing by the maximum gain pos-
sible in each class, it accounts for the fact that some classrooms
have more room to gain than other classrooms. A class that
scores an 80% on the pretest and a 90% on the posttest has an
average normalized gain of 0.5, matching a class that scores
60% on the pretest and 80% on the posttest (i.e., each class
gained exactly half of the amount it could have gained on
the posttest). Second, the size of Hake’s initial study made it
possible for researchers to compare learning gains informally
across classrooms, even if their own study did not include
enough classes to make a formal statistical test possible. That
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is, researchers could compute <g> for one or a few class-
rooms under study and make a judgment about whether the
values are similar to those reported in the Hake study (e.g.,
Knight and Wood, 2005; McDaniel et al., 2007; Tanahoung
et al., 2009). Finally, in studies with large numbers of treat-
ment and control classrooms, <g> can be used to formally
test whether learning gains in the treatment classes are larger
than in the control classes (e.g., Redish and Steinberg, 1999;
LoPresto and Murrell, 2009). However, using <g> results in
low sample sizes and thus poor statistical power, because it
uses the class as the unit of analysis instead of using individ-
ual students.

Normalized Change Scores

Marx and Cummings (2007) created a student-level alterna-
tive to Hake’s normalized gain measure called the normalized
change score, symbolized c. Instead of computing learning
gains at the classroom level with <g>, Marx and Cummings
advocate calculating learning gains at the student level, using
the following formula:

t —
%;f if post > pre

drop if post = pre = 100 or 0

CcC =
0 if 0 < post = pre < 100

post — pre .
—_ f post

pre if post < pre

For students who score higher on the posttest than the
pretest, the student-level normalized change score is com-
puted similarly to a classroom-level normalized gain. The last
three possibilities deal with unusual circumstances: students
who score 0 or 100 on both the pre- and posttest are dropped;
students who score the same on the pre- and posttest get
a 0; and students who score lower on the posttest than the
pretest have this negative gain scaled by the possible number
of points they could have lost.

Because normalized change scores compare learning gains
for students rather than for classrooms, they have two sub-
stantial advantages over normalized gain scores. First, they
can be used to compare the impact of interventions assigned
within classrooms rather than across classrooms (see Smith
etal., 2011, for an example). Second, because the observations
are at the student level rather than at the classroom level, the
sample size is substantially larger compared with using nor-
malized change scores, providing increased statistical power.

Normalized change scores have an important limitation,
however. If students get a perfect score on the posttest, their
c is 1 no matter whether their prescore was 1% or 99%. Simi-
larly, if students score the same on the pre- and posttest, their
score is 0, no matter whether their prescore was 1% or 99%.
In these cases, the goal of normalizing for “ease of improve-
ment” is lost.

Effect Sizes

Andrews and colleagues (2011) collect pre/ posttest score data
on the conceptual inventory of natural selection from a sam-
ple of introductory biology courses around the United States,
and compare learning gains from courses in which instructors
used different numbers of active-learning exercises per week.
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To quantify learning gains at the classroom level, they use a
metric known as an effect size. Effect sizes are commonly
used in meta-analyses because they put estimated treatment
effects from different studies in a common scale. For exam-
ple, researchers can calculate a standardized mean difference,
which expresses the difference between groups in units of
SD, using Cohen’s d statistic or a variant called Hedges’ g.
With pre—post data from identical assessments, it is appro-
priate to use a modification of Cohen’s d that accounts for the
same students being tested twice (see Becker, 1988; Dunlap

et al., 1996). Thus, Andrews et al. calculate the effect size for
Xpnst_XprL‘
/AT
erage scores on the post- and pretest, s; is the SD of the raw
gain scores, and r is the correlation between student scores
on the pre- and posttests. Andrews and colleagues estimate
a classroom-level linear regression using each class’s effect
size as the dependent variable, and find that the number of
active-learning exercises used per week has no relationship
to student learning gains.

Andrews and colleagues’ (2011) use of linear regression is
an important addition to the undergraduate STEM educa-
tion literature, as it allows them to control for factors other
than active learning—such as the instructor’s position and
years of teaching experience, class size, and student-rated
course difficulty—that could influence learning gains in the
treatment and control classrooms. However, Andrews and
colleagues estimate their regression at the classroom level
and do not have access to student characteristics that can be
used as control variables. A large K-12 literature (e.g., Rock-
off 2004; Rivkin ef al., 2005) demonstrates that observable
student characteristics are often correlated not just with stu-
dent performance but also with student learning gains. Thus,
this approach—like the prior three methods we reviewed—
does not account for the possibility that differences in student
learning gains, or lack thereof, are due to differences in the
characteristics of students in the treatment and control class-
rooms rather than to the effect of the intervention.

each class as d = where X5 and X, are the av-

CONTROLLING FOR STUDENT
NONEQUIVALENCE: THE PROBLEM

To illustrate the importance of controlling for observable
student characteristics in the treatment and control classes
when evaluating the impact of nonrandomized educational
interventions, we apply the four methods above to pre- and
posttest scores from two sections of an introductory biology
course offered during the Summer of 2012 at the University of
Washington. Each section was taught by the same instructor
using the exact same materials and instructional strategies.
Thus, without knowing anything about the student compo-
sition of the two classes, there is no a priori reason to expect
different student performance in the two classes. Given that
there is actually no treatment at all, this should be an exam-
ple of a statistical test wherein the null hypothesis—that the
treatment had no impact on student learning gains—should
not be rejected. We will label one of these sections as the
treatment (section A) and the other section as the control
(section B).

We will demonstrate that each of the methods above does
lead to the conclusion that, for this particular pair of sections
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in this particular course, learning gains in the treatment class
are higher than in the control class. This would ordinarily be
taken as evidence that the “instructional intervention” in the
treatment class had a significant impact on student learning
gains. But given that there was no intervention at all, we ex-
plore whether the student composition of these two particu-
lar sections may have contributed to the incorrect conclusion.
Throughout the analysis that follows, we interpret the results
of all tests of statistical significance at the 90% confidence
level—meaning that the p value must be <0.1 to reject the
null hypothesis. We caution, however, against overreliance
on conventional levels of statistical significance.

Data Overview

At the start of the term, students in each section took a di-
agnostic test (Shi et al., 2010), converted to a 100-point scale,
that was intended to measure their prior knowledge about the
topics to be covered in the course. Then 2 wk into the course,
students took an in-class exam on the same material—also
graded on a 100-point scale—that covered material taught in
the first 2 wk of the course. We will treat the diagnostic test as
the pretest and the in-class exam as the posttest. The average
pretest scores were 59.8 (SD = 18.1) in section A (the “treat-
ment” section) and 59.3 (SD = 17.0) in section B (the “control”
section), and are not significantly different between the two
sections (the p value from a two-sample f test is 0.865). This is
important because many authors (e.g., McDaniel et al., 2007)
assume that the treatment and control classes have similar
incoming characteristics if the pretest scores are not signifi-
cantly different. The average posttest scores were 72.0 (SD =
15.8) in the treatment section and 67.0 (SD = 15.0) in the con-
trol section, which a t test indicates is significantly different (p
= 0.050). We now analyze these data using the four methods
discussed in the preceding section.

Comparison of Raw Change Scores

In the treatment class, the average raw change score is 72.0 —
59.8 =12.2 (SD = 15.0), while in the control class, the average
raw change score is 67.0-59.3 =7.7 (SD = 15.8). A t test of the
null hypothesis that these average raw change scores are the
same gives a p value of 0.077, which is statistically significant
at the 90% confidence level. Thus, with this methodology,
there is sufficient evidence to reject the null hypothesis and
conclude that student learning gains were greater in the treat-
ment class than in the control class.

Normalized Gain Scores

The normalized gain score in the treatment class is 22028 —

0.30, while the normalized gain in the control class is
720-%98 _ () 19, Because we are limited to only one treatment
100—59.8 - y

class and one control class, there is no way to statistically test
whether these normalized gain scores are significantly differ-
ent. That said, the magnitude of the difference may lead to the
conclusion that learning gains were greater in the treatment
class than in the control class.

Normalized Change Scores

The average normalized change score in the treatment class is
0.31 (SD = 0.29), while the average normalized change score
in the control class is 0.19 (SD = 0.29). A t test of the null
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hypothesis that these average normalized changes scores are
the same gives a p value of 0.012, which is statistically sig-
nificant. Thus, with this methodology, there is sufficient evi-
dence to reject the null hypothesis and conclude that student
learning gains were greater in the treatment class than in the
control class.

Effect Sizes

The correlation between student scores on the pre- and
posttests is r = 0.56. Thus, the effect size for the treatment
lass is —22—— = (.7 hile the effect size for th -
class is 50205 0.76, while the effect size for the con
1 1 : 7.7
trol class is 58 i 050
there is no way to test whether these effect sizes are signifi-
cantly different with only one treatment and one control class.
That said, the magnitude of the difference between the two
classes may lead to the conclusion that learning gains in the
treatment class were larger than learning gains in the control
class.

= 0.46. As with normalized gains,

Potential Explanation

Each of the above methods could lead to the conclusion that
the intervention in the treatment class had a significant pos-
itive impact on student learning gains. But given that there
was no intervention at all, there must be another explanation
for the observed difference in learning gains. One possibility
is that the differences occurred by chance. The p value for a ¢
test comparing normalized change scores, for example, tells
us that there is a 1.2% chance of observing differences this ex-
treme by chance alone. Another more probable explanation,
though, is that the student composition of the two sections is
driving the differences.

To investigate this hypothesis, we collected data on two
measures that should reflect student ability and preparation:
incoming undergraduate grade point average (GPA) and final
grade in the preceding course in the introductory biology
sequence. Due to a scheduling conflict during this particular
term, the two sections had substantially different incoming
performance levels. Specifically, the average incoming GPA in
the treatment class was 3.33 (SD = 0.42), which a t test shows
is significantly higher (p < 0.001) than the average incoming
GPA in the control class, 3.04 (SD = 0.43). Likewise, the prior
biology grade averaged 3.09 (SD = 0.76) in the treatment class,
which a f test indicates is significantly higher (p < 0.001) than
the average prior biology grade in the control class, 2.69 (SD
= 0.66).

This observation underlines the central message of this pa-
per. The gold standard for evaluating the impact of treatments
of any kind—educational or otherwise—is a large random-
ized controlled trial. If sample sizes are large and if treat-
ments are randomly assigned to the experimental subjects
(or students, in this case), then there is no reason to expect
the treatment and control groups to differ in any way, except
that the treatment group received the treatment, while the
control group did not. But in the context of evaluating the im-
pact of interventions in undergraduate STEM classrooms, it
is often not feasible to randomly assign students to treatment
and control classes. The nonrandomized design that results
opens up the possibility that the treatment and control classes
will be substantially different, as our example shows. If these
differences are correlated with student learning gains, then
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any of the methods above runs the risk of attributing ob-
served differences to the impact of the treatment, when in
reality they are due to differences in the composition of the
groups being compared. This is true even if the treatment had
no effect at all.

Given that many interventions in undergraduate STEM ed-
ucation cannot be randomized, is there a way to distinguish
the impact of incoming student characteristics from the im-
pact of the intervention itself? We argue that the answer is
often yes, and that multiple linear regression can be a useful
tool in any such analysis. We introduce this methodology in
the next section, apply it to our data, and demonstrate that
it leads to the correct conclusion: controlling for incoming
student characteristics, there is no statistically significant dif-
ference in learning gains between the treatment and control
classes in our example. Our goal in the following section is not
to provide a rigorous theory of linear regression, but rather
to motivate its use for evaluating the impact of educational
interventions on student learning gains. We refer interested
readers to chapters 3 and 4 of Gelman and Hill (2007) for
an accessible discussion of broader considerations in linear
regression.

CONTROLLING FOR STUDENT
NONEQUIVALENCE: A SOLUTION

It is intuitive to think of a student’s performance on a test
as a function of many factors: the student’s prior knowledge
about the specific topics on the test, the student’s understand-
ing of the larger discipline, the student’s work habits and
study skills, and the intervention itself. A linear regression
model formalizes this intuition by assuming that an outcome
or dependent variable (in this case, a student’s score on the
posttest) is a linear function of explanatory (or control) vari-
ables and the intervention itself. Linear regression is not the
only methodology that allows for this framework, but we will
restrict our attention to it for simplicity.

A key step in a linear regression analysis is collecting
data about control variables—measurements that can serve as
proxies for factors that may influence the outcome variable,
other than the treatment of interest. In a pre- and posttest
setting, each student’s score on the pretest is one obvious
control variable, as the prescore controls for each student’s
prior knowledge about the specific topics on the test. In our
example, we also collected data on each student’s under-
graduate GPA and grade in a previous biology class. The
latter may be a reasonable proxy for each student’s under-
standing of the broader field of biology, while both measures
provide some information about each student’s work habits
and study skills.

Undergraduate GPA and previous biology grade are cer-
tainly not the only variables we could select to control for vari-
ation in student preparation and ability. In fact, researchers
often have access to more student-level variables than are
practical to use. Procedures like stepwise regression can assist
researchers in selecting control variables that are most predic-
tive of the outcome variable (see Freeman et al., 2007, for an
example). Researchers can also use professional judgment—
based on the available variables, data from similar studies in
the literature, and their own experience—in selecting control
variables. We chose a measure of overall academic perfor-
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mance (undergraduate GPA) and a measure of performance
specific to biology (previous biology grade). Although the
correlation between these variables is high (r = 0.84), we chose
both to account for the possibility that they capture different
dimensions of student academic background—a decision that
isborne out in the results in the next section. We also note that
if we had data on many classrooms taught at different times
by different instructors, we would also consider controlling
for indicators such as time-of-day and class instructor, if the
data suggested these indicators were relevant to the outcome
being measured.

With these considerations in mind, we define the following
variables for each student: X, is the student’s score on the
posttest; X, is the student’s score on the pretest; GPA is the
student’s undergraduate GPA; Grade is the student’s grade
in the introductory course; and Treatment is an indicator for
whether the student was in the class that received the inter-
vention (Treatment = 1 if the student is in the treatment class,
Treatment = 0 if the student is in the control class). We rec-
ommend centering each of the control variables (in this case,
Pre, GPA, and Grade) by subtracting the mean of each vari-
able from each student’s value (see Gelman and Hill, 2007,
sections 4.1 and 4.2). One possible linear regression model
that uses these variables is the following:

Xpost = o+ B1 % Xpre + B2 X GPA

+ B3 x Grade + B4 x Treatment + & (1)

The Bs in Eq. 1 are regression coefficients that describe
the relationship between each variable and the student’s
postscore:

® B, is the intercept, or the expected postscore for a student
with an average prescore, GPA, and prior grade, who did
not receive the treatment (note that if the control variables
are not centered, f is the expected postscore for a student
with prescore of 0, GPA of 0, etc., which are not meaningful
values);

® f, is the expected increase in the postscore for each
additional point on the student’s prescore;

® f, is the expected increase in the postscore for each
additional GPA point;

® B3 is the expected increase in the postscore for each
additional grade point from the previous course; and

® B, is the expected increase in the postscore for students
who received the intervention relative to students who did
not receive the intervention.

In contrast to approaches like type  ANOVA that estimate
the effect of each variable sequentially, a linear regression es-
timates each of these coefficients simultaneously. Thus, each
of these regression coefficients should be interpreted as “all
else equal,” meaning that they represent the marginal effect
of changing one variable while holding all the other variables con-
stant. The error term ¢ captures the reality that the regression
equation does not perfectly predict each student’s postscore.

Statistical software packages provide an estimate for each
regression coefficient and the p value from the ¢ test of the
null hypothesis that the coefficient equals zero. For exam-
ple, consider the coefficient of interest in Eq. 1: B4, or the
“treatment effect” for students who received the interven-
tion relative to students who did not receive the intervention.
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Table 1. Estimated regression coefficients from linear regression Eq. 1

Coefficient Estimate SE p Value from ¢ test?
Intercept (Bo) 69.61 1.31 <0.0001***
Prescore (f1) 0.28 0.06 <0.0001***
GPA () 12.31 3.82 0.0016**
Grade (85) 437 2.30 0.0595+
Treatment (f4) —0.42 1.91 0.8272

2Significance levels from two-sided  test: *,p <0.1;% p < 0.05;*, p < 0.01;, **, p < 0.001.

The null hypothesis is that this coefficient equals zero—that
is, the intervention had no effect. Linear regression provides
both an estimate of this treatment effect and a test of whether
the treatment effect really is significantly different from zero,
controlling for the influence of each of the other variables in the
model. Note that if differences in learning gains between the
treatment and control classes can be explained by the control
variables and not by the intervention itself, then the treatment
effect should not be significantly different from zero. On the
other hand, if the intervention does have a significant impact
on student performance, the null hypothesis should be re-
jected, and (if the regression model is correctly specified) the
estimated treatment effect should quantify the average effect
of the intervention on student test scores.

Linear regression makes some important assumptions.
While it is beyond the scope of this paper to discuss all of
them in depth (see Gelman and Hill, 2007, section 3.6, for
more details), there are a few that are particularly important
for the present application. The first is that the error term ¢
is normally distributed. This assumption can be problematic
if the maximum score on the test creates a “ceiling effect”
that artificially limits the scores of the best students in the
class. In this situation, these students will consistently score
lower than the model predicts, because there is a violation
of the normality assumption. Another assumption is that the
influence of the control variables truly is linear. There is no
compelling reason, other than mathematical convenience, to
assume that the influence of a student’s prescore, GPA, and
prior grades on his or her postscore is truly additive as op-
posed to multiplicative or otherwise nonlinear.

These assumptions are important, and there are many
methods to test and relax them (see Gelman and Hill, 2007,
chapters 3-6). Here, however, we focus on standard linear
regression.

DATA ANALYSIS USING MULTIPLE LINEAR
REGRESSION

We now return to the introductory biology data and illus-
trate that linear regression leads to the correct conclusion that
there is no evidence that the “intervention” has a significant
impact on student performance, controlling for other differ-
ences between students in the treatment and control classes.
We estimate the linear regression equation specified in Eq. 1,
and report the estimated coefficients By in Table 1. (Note that
the “hat” over each regression coefficient indicates that it is
an estimate of the parameter g; in Eq. 1.)
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These estimates can be interpreted as follows.

® The estimated intercept (By = 69.61) means that the ex-
pected score on the posttest for a student with an average
prescore, average GPA, and average prior grade, who did
not receive the intervention is 69.61.

® The coefficient on the prescore (8, = 0.28) means that we
expect a student’s score on the posttest to increase by 0.28
points for each additional point the student scores on the
pretest, all else equal (i.e., holding all the other variables
constant).

® The coefficient on GPA (8, = 12.31) means that we expect
a student’s score on the posttest to increase by 12.31 points
for each additional point in the student’s GPA, all else
equal.

® Tinally, the coefficient on the prior grade (5 = 4.37) means
that we expect a student’s score on the posttest to increase
by 4.37 points for each additional point in the student’s
grade from the previous biology course, all else equal.

For each coefficient, the null hypothesis that the coefficient
equals zero is rejected at the 90% confidence level, so we have
sufficient evidence to conclude that each of these control vari-
ables has an independent, significant correlation with student
performance on the posttest. This is extremely important, as
it means that even when controlling for a student’s score on
the pretest, a student’s GPA and prior grades are still pre-
dictive of his or her score on the posttest. This may be due
to students with higher GPAs having better study skills and
work habits, and therefore preparing more effectively for the
posttest. As in many studies, the posttest in our example was
announced on the syllabus and awarded course points, while
the pretest was not—a situation that may increase the impact
of differences in motivation or preparation. Alternatively, it
is possible that students who received a better grade in the
previous biology course have a better understanding of the
broader discipline, which helped them prepare for and an-
swer questions on the posttest.

Finally, the p value of the estimate Bi—from the f test of
the null hypothesis of no treatment effect—is 0.827, which
means that there is not nearly enough evidence to reject the
null hypothesis that the “intervention” is significantly corre-
lated with student performance, controlling for the influence
of other student-level characteristics. Given that there was
no intervention in the treatment class at all, it is reassuring
that the linear regression model leads to this conclusion. This
reinforces our central message: It is essential to control for
potential student nonequivalence between the treatment and
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control groups when evaluating the impact of a nonrandom-
ized educational intervention.

TOWARD INTEGRATION OF LINEAR
REGRESSION IN UNDERGRADUATE STEM
RESEARCH

We have shown that existing methods of evaluating interven-
tions in college science classrooms can lead to erroneous con-
clusions when the interventions are not randomly assigned
to students, and that linear regression can help mitigate this
problem by controlling for observable characteristics that are
also correlated with student learning gains. We caution that
estimates from a linear regression do not justify a causal inter-
pretation, except under strict assumptions, and that random-
ization of the intervention is still the best way to establish a
treatment effect.

In our motivating example, we have used a multiple lin-
ear regression model to illustrate the simplicity and utility
of a regression framework. However, there are many other
reasons that education researchers should be drawn to this
framework. Although we choose not to control for gender and
ethnicity in our regression model, regression can also be used
to test whether women, minorities, or any other affinity group
are gaining more or less in our classrooms, all else equal. Re-
gression models can also include interaction terms that test
whether the intervention has a differential impact on different
types of students. Researchers who currently use normalized
change scores can simply use these values as the outcome
variable in a linear regression. (When doing so, though, we
recommend not including prescore as a predictor variable,
as prescore is already included in normalized change.) Fi-
nally, while it is beyond the scope of this paper to discuss
more complex regression methods, an even more rigorous
approach could use generalized linear models to model non-
linear relationships between student characteristics and test
scores, analyze student responses at the individual-question
level, or produce unbiased estimates in the presence of a ceil-
ing effect.

The undergraduate STEM education literature has made re-
markable strides in recent years, but the methods commonly
used to estimate the impact of instructional interventions lead
to troubling questions about whether these treatment effects
really are due to the interventions. It is possible that none of
the results in the studies we reviewed would have changed
if the researchers had controlled for student characteristics
in a regression framework, but we hope we have illustrated
that linear regression should be a component of any analysis
of a nonrandomized instructional intervention. It is time for
this growing literature to take the next step and ensure that
reported treatment effects are the result of the intervention
itself, not the students.
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